Write your name here		
Surname		Other names
Pearson Edexcel GCE	Centre Number	Candidate Number
Further F Mathema Advanced/Advance	Pure atics Fl ced Subsidia	P3 Iry
Monday 27 June 2016 – Time: 1 hour 30 minute	Morning 25	Paper Reference 6669/01
You must have: Mathematical Formulae and	Statistical Tables (Pi	ink)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

1.
$$\mathbf{A} = \begin{pmatrix} -2 & 1 & -3 \\ k & 1 & 3 \\ 2 & -1 & k \end{pmatrix}$$
, where k is a constant

Given that the matrix **A** is singular, find the possible values of *k*.

(Total 4 marks)

2. The curve *C* has equation

$$y = \frac{x^2}{8} - \ln x, \quad 2 \le x \le 3.$$

Find the length of the curve C giving your answer in the form $p + \ln q$, where p and q are rational numbers to be found.

(Total 7 marks)

3. (*a*) Prove that

$$\frac{\mathrm{d}(\mathrm{arcoth}\,x)}{\mathrm{d}x} = \frac{1}{1-x^2}.$$
(3)

Given that $y = (\operatorname{arcoth} x)^2$,

(*b*) show that

$$(1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx}=\frac{k}{1-x^2},$$

where *k* is a constant to be determined.

(5)

(Total 8 marks)

4. (i) Find, without using a calculator,

$$\int_{3}^{5} \frac{1}{\sqrt{15 + 2x - x^2}} \, \mathrm{d}x$$

giving your answer as a multiple of π .

(ii) (a) Show that

$$5 \cosh x - 4 \sinh x = \frac{e^{2x} + 9}{2e^x}.$$

(b) Hence, using the substitution $u = e^x$ or otherwise, find

$$\int \frac{1}{5\cosh x - 4\sinh x} \, \mathrm{d}x$$

(4)

(Total 12 marks)

5. The hyperbola H has equation

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

The point *P* (4 sec θ , 3 tan θ), $0 < \theta < \frac{\pi}{2}$ lies on *H*.

(a) Show that an equation of the normal to H at the point P is

$$3y + 4x \sin \theta = 25 \tan \theta.$$

The line *l* is the directrix of *H* for which x > 0.

The normal to *H* at *P* crosses the line *l* at the point *Q*. Given that $\theta = \frac{\pi}{4}$,

(b) find the y coordinate of Q, giving your answer in the form $a + b\sqrt{2}$, where a and b are rational numbers to be found.

(6)

(Total 11 marks)

(5)

(3)

(5)

6.
$$\mathbf{M} = \begin{pmatrix} p & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & a \end{pmatrix}$$

where p and q are constants.

Given that
$$\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
 is an eigenvector of the matrix **M**,

(a) find the eigenvalue corresponding to this eigenvector,

(*b*) find the value of *p* and the value of *q*.

Given that 6 is another eigenvalue of M,

(c) find a corresponding eigenvector.

Given that $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ is a third eigenvector of **M** with eigenvalue 3,

(d) find a matrix **P** and a diagonal matrix **D** such that

$$\mathbf{P}^{\mathrm{T}}\mathbf{M}\mathbf{P}=\mathbf{D}.$$

(3)

(3)

(3)

(2)

(Total 11 marks)

7. Given that

$$I_n = \int \frac{\sin nx}{\sin x} \mathrm{d}x, \quad n \ge 1,$$

(*a*) prove that, for $n \ge 3$

$$I_n - I_{n-2} = \int 2\cos(n-1)x \, \mathrm{d}x.$$
(3)

(b) Hence, showing each step of your working, find the exact value of

$$\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \frac{\sin 5x}{\sin x} \, \mathrm{d}x,$$

giving your answer in the form $\frac{1}{12}(a\pi + b\sqrt{3} + c)$, where a, b and c are integers to be found.

(7)

(Total 10 marks)

8. The plane Π_1 has equation

$$x - 5y - 2z = 3.$$

The plane Π_2 has equation

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}) + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k}),$$

where λ and μ are scalar parameters.

- (a) Show that Π_1 is perpendicular to Π_2 .
- (b) Find a cartesian equation for Π_2 .
- (c) Find an equation for the line of intersection of Π_1 and Π_2 giving your answer in the form $(\mathbf{r} \mathbf{a}) \times \mathbf{b} = \mathbf{0}$, where \mathbf{a} and \mathbf{b} are constant vectors to be found.

(6)

(Total 12 marks)

TOTAL FOR PAPER: 75 MARKS

(4)

(2)

Question Number	Scheme	Notes	Marks
1.	$\mathbf{A} = \begin{pmatrix} -2\\k\\2 \end{pmatrix}$	$ \begin{array}{ccc} 1 & -3 \\ 1 & 3 \\ -1 & k \end{array} $	
	det $\mathbf{A} = -2(k+3) - (k^2 - 6) - 3(-k-2) \mathbf{r}$ or e.g. det $\mathbf{A} = -k(k-3) + (-2k+6) - 3(2-2) \mathbf{r}$ det $\mathbf{A} = 2(3+3) + (-6+3k) + k(-2-k) \mathbf{r}$ det $\mathbf{A} = -2(k+3) - k(k-3) + 2(3+3) \mathbf{col}$ det $\mathbf{A} = -(k^2 - 6) + (-2k+6) + (-6+3k) \mathbf{r}$ det $\mathbf{A} = -3(-2-k) - 3(2-2) + k(-2-k) \mathbf{c}$ Note that e.g. det $\mathbf{A} = -2\begin{vmatrix} 1 & 3 \\ -1 & k \end{vmatrix} - \begin{vmatrix} k \\ 2 \end{vmatrix}$	$row1$ M1: Correct attempt at determinant (3 'elements' (may be implied if one is zero) with at least two elements correct). Note that there are various alternatives depending on the choice of row or column. $col2$ A1: Correct determinant in any form $3 \\ k \end{vmatrix} - 3 \begin{vmatrix} k & 1 \\ 2 & -1 \end{vmatrix}$ scores no marks until the	M1A1
	determinants	are 'extracted'.	
	$-2(k+3) - (k^2 - 6) - 3(-k - 2) = 0 \Longrightarrow k$	Sets their det $\mathbf{A} = 0$ (= 0 may be implied) and attempts to solve a 3 term quadratic (see general guidance) as far as $k = \dots$ NB Correct quadratic is $k^2 - k - 6 = 0$	M1
	$(k+2)(k-3) = 0 \Longrightarrow k = -2, 3$	Both values correct	A1
			(4)
			Total 4

Question Number	Scheme	Notes	Marks
2.	$y = \frac{x^2}{8} - \ln x, 2 \le x \le 3$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{4} - \frac{1}{x}$	Correct derivative. Allow any correct equivalent e.g. $\frac{2x}{8} - \frac{1}{x}$	B1
	$L = \int \sqrt{\left(1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right)} \mathrm{d}x = \int \sqrt{\left(1 + \left(\frac{x}{4} - \frac{1}{x}\right)^2\right)} \mathrm{d}x$	$\left \frac{dx}{dx} \right ^{2} dx$ Use of a correct formula using their derivative and not the given y.	M1
	$= \int \sqrt{\left(1 + \frac{x^2}{16} - \frac{1}{2} + \frac{1}{x^2}\right)} \mathrm{d}x = \int \sqrt{\left(\frac{x^2}{16} + \frac{1}{2}\right)} \mathrm{d}x$	$\overline{\left(\frac{1}{x^2}\right)} dx = \int \sqrt{\left(\frac{x}{4} + \frac{1}{x}\right)^2} dx = \int \left(\frac{x}{4} + \frac{1}{x}\right) dx$	
	M1: Squares their derivative to obtain $ax^2 + bx^{-2} + c$, where none of <i>a</i> , <i>b</i> or <i>c</i> are zero - this may be implied by e.g. $\frac{ax^4 + bx^2 + c}{dx^2}$ and adds 1 to their constant term.		M1 A1
	A1: Correct integrand $\frac{x}{4} + \frac{1}{x}$ or equivalent e.g. $\frac{x^2 + 4}{4x}$ (integral sign not needed)		
	$=\frac{x^2}{8}+\ln kx$	Correct integration	A1
	$\left[\frac{x^2}{8} + \ln x\right]_2^3 = \left(\frac{3^2}{8} + \ln 3\right) - \left(\frac{2^2}{8} + \ln 2\right)$	Substitutes 2 and 3 into an expression of the form $px^2 + q \ln x \ (p,q \neq 0)$ and subtracts the right way round. Must be seen explicitly or may be implied by a correct exact answer for their integration. If the candidate gives the final single answer in decimals with no substitution shown, e.g. 1.030this is M0.	M1
	$\frac{5}{8} + \ln\frac{3}{2}$	Cao and cso (oe e.g $0.625 + \ln \frac{3}{2}$)	A1
			(7) Total 7
1			I ULAI /

Question Number	Scheme	Notes	Marks
3 (a)	$y = \operatorname{arcoth} x \Longrightarrow \operatorname{coth} y = x$ or e.g. $u = \operatorname{arcoth} x \Longrightarrow \operatorname{coth} u = x$	Changes from arcoth to coth correctly. This may be implied by e.g. $\tanh y = \frac{1}{x}$	B1
	$x = \frac{\cosh y}{\sinh y} \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\sinh^2 y - \cosh^2 y}{\sinh^2 y} \left(= -\frac{1}{\sinh^2 y} \right)$	Uses $\operatorname{coth} y = \frac{\cosh y}{\sinh y}$ and attempts product or quotient rule	M1
	$\frac{dx}{dy} = -\operatorname{cosech}^2 y = 1 - \operatorname{coth}^2 y$ $\Rightarrow \frac{dy}{dx} = \frac{1}{1 - \operatorname{coth}^2 y} = \frac{1}{1 - x^2} *$	Correct completion with no errors seen and an intermediate step shown.	A1*
			(3)
	(a) Alternati	ive 2	
	$y = \operatorname{arcoth} x \Longrightarrow \operatorname{coth} y = x$	Changes from arcoth to coth correctly. This may be implied by e.g. $tanh y = \frac{1}{x}$	B1
	$-\operatorname{cosech}^{2} y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \text{ or } -\operatorname{cosech}^{2} y = \frac{\mathrm{d}x}{\mathrm{d}y}$ $\left(\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\operatorname{cosech}^{2} y} \right)$	$\pm \operatorname{cosech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \text{ or } \pm \operatorname{cosech}^2 y = \frac{\mathrm{d}x}{\mathrm{d}y}$	M1
	$\operatorname{coth}^2 y - 1 = \operatorname{cosech}^2 y \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - x^2} *$	Correct completion with no errors seen and an intermediate step shown.	A1*
	(a) Alternati	ive 3	
	$y = \operatorname{arcoth} x \Longrightarrow \operatorname{coth} y = x$	Changes from arcoth to coth correctly This may be implied by e.g. $tanh y = \frac{1}{x}$	B1
	$x = \operatorname{coth} y = \frac{e^{2y} + 1}{e^{2y} - 1} \Longrightarrow \frac{dx}{dy} = \frac{(e^{2y} - 1)^2 2e^{2y} - (e^{2y} + 1)^2 2e^{2y}}{(e^{2y} - 1)^2}$ Expresses cothy in terms of exponentials and differentiates		
	$\frac{dx}{dy} = \frac{-4e^{2y}}{\left(e^{2y}-1\right)^2} \Rightarrow \frac{dy}{dx} = \frac{e^{4y}-2e^{2y}+1}{-4e^{2y}} = \frac{e^{2y}-2+e^{-2y}}{-4} = -\left(\frac{e^y-e^{-y}}{2}\right)^2 = -\sinh^2 y = -\frac{1}{\cosh^2 y}$ $= \frac{1}{1-\coth^2 y} = \frac{1}{1-x^2} *$ Completes correctly with no errors		

(a) Alternative 4			
$y = \operatorname{arcoth} x \Longrightarrow \operatorname{coth} y = x$	Changes This may	from arcoth to coth correctly y be implied by e.g. $tanh y = \frac{1}{x}$	B1
$x = \coth y = \frac{e^{y} + e^{-y}}{e^{y} - e^{-y}} \Longrightarrow \frac{dx}{dy} = \frac{\left(e^{y} - e^{-y}\right)^{2} - \left(e^{y}\right)^{2}}{\left(e^{y} - e^{-y}\right)^{2}}$	$\left(\frac{1}{2}+e^{-y}\right)^2$	Expresses cothy in terms of exponentials and differentiates	M1
$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{-4}{\left(\mathrm{e}^{y} - \mathrm{e}^{-y}\right)^{2}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\mathrm{cosech}^{2}y}$			
$\operatorname{coth}^2 y - 1 = \operatorname{cosech}^2 y \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - x^2} *$	Correct of and an in	completion with no errors seen ntermediate step shown.	A1*

(a) Alternative 5		
$y = \operatorname{arcoth} x = \frac{1}{2} \ln \left(\frac{1+x}{x-1} \right)$	Correct In form for arcoth	B1
$\frac{dy}{dx} = \frac{1}{2} \left[\frac{x-1}{x+1} \times \frac{(x-1) - (x+1)}{(x-1)^2} \right]$ or $\frac{1}{2} \ln\left(\frac{1+x}{x-1}\right) = \frac{1}{2} \ln(1+x) - \frac{1}{2} \ln(x-1)$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2(x+1)} - \frac{1}{2(x-1)}$	Attempts to differentiate using the chain rule and quotient rule or writes as two logarithms and differentiates.	M1
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1-x^2}$	Correct completion with no errors seen.	A1
Note that use of $\operatorname{arcoth} x = \frac{1}{\operatorname{artanh.}}$	$\frac{1}{x} \left(= \frac{1}{\frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)} \right)$ scores no marks	

(a) Alterna	tive 6	
$y = \operatorname{arcoth} x \Longrightarrow \operatorname{coth} y = x$	Changes from arcoth to coth correctly This may be implied by e.g. $tanh y = \frac{1}{x}$	B1
$\tanh y = \frac{1}{x} \Longrightarrow -\frac{1}{x^2} = \operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x}$	$\pm \frac{1}{x^2} = \pm \operatorname{sech}^2 y \frac{\mathrm{d}x}{\mathrm{d}y}$	M1
$-\frac{1}{x^2} = \left(1 - \frac{1}{x^2}\right) \frac{dy}{dx} \Longrightarrow \frac{dy}{dx} = \frac{1}{1 - x^2}$	Correct completion with no errors seen.	A1*
(a) Alternative 7		
$y = \operatorname{arcoth} x = \operatorname{artanh}\left(\frac{1}{x}\right)$	Expresses arcoth in terms of artanh correctly	B1
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - \left(\frac{1}{x}\right)^2} \times -x^{-2}$	Differentiates using the chain rule	M1
$=\frac{-1}{x^2-1}=\frac{1}{1-x^2}$	Correct completion with no errors seen.	A1*

(b)	$y = (\operatorname{arcoth} x)^2 \Rightarrow \frac{dy}{dx} = 2(\operatorname{arcoth} x) \times \frac{1}{1 - x^2}$ Correct first de	erivative	B1
	$\frac{d^2 y}{dx^2} = \frac{2}{1-x^2} \left(1-x^2\right)^{-1} + 4x \operatorname{arcoth} x \times \left(1-x^2\right)^{-2}$		
	$\frac{d^2 y}{dx^2} = \frac{2(1-x^2) \times \frac{1}{1-x^2} + 2\operatorname{arcoth} x \times 2x}{(1-x^2)^2} \left(= \frac{4x\operatorname{arcot}}{(1-x^2)^2} \right)^2$	$\left(\frac{hx+2}{c^2}\right)^2$	M1A1
	M1: Attempts product or quotient rule on an expression of the	the form $\frac{k \operatorname{arcoth} x}{1 - x^2}$	
	Product rule requires $\pm P(1-x^2)^{-2} \pm Qx \operatorname{arcoth} x$ (1)	$(-x^2)^{-2}$ oe	
	Quotient rule requires $\frac{\pm P \pm Qx \operatorname{arcoth} x}{\left(1 - x^2\right)^2}$ of		
	$(1-x^{2})\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} = (1-x^{2})\left(\frac{4x\operatorname{arcoth} x + 2}{(1-x^{2})^{2}}\right) - 2x \times \left(\frac{1-x^{2}}{(1-x^{2})^{2}}\right)$	$\frac{2\operatorname{arcoth} x}{1-x^2}\right)$	M1
	$d^2 $ $d^2 $ $d^2 $		1011
	$\left(1-x^2\right)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{2}{1-x^2} + 2x \times \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$		
	M1: Substitutes their first and second derivatives into the lhs of th	e differential equation	
	or multiplies through by $(1 - x^2)$ and replaces $2(\operatorname{arcoth} x) \times \frac{1}{1 - x^2}$ by $\frac{dy}{dx}$		
	$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} = \frac{2}{1-x^2}$ Correct conclusion v	with no errors	Alcso
			(5)

	(b) Alternative 1		
	$y = (\operatorname{arcoth} x)^2 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2(\operatorname{arcoth} x) \times \frac{1}{1 - x^2}$	Correct first derivative	B1
	$(1 - 2) dy$ $(1 - 2) d^2 y$ dy	M1: Multiplies through by $1 - x^2$ and	
		attempts product rule on $(1-x^2)\frac{dy}{dx}$.	
$(1-x^2)\frac{dy}{dx} = 2\operatorname{arcoth} x \Longrightarrow (1-x^2)\frac{dy}{dx^2} - 2x\frac{dy}{dx} = \dots$	Requires $(1-x^2)\frac{d^2y}{dx^2} \pm Px\frac{dy}{dx}$ oe	MIAI	
		A1: Correct differentiation	
	$\frac{d(2\operatorname{arcoth} x)}{dx} = \frac{2}{1-x^2}$	Differentiates rhs using the result from part (a)	M1
	$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} = \frac{2}{1-x^2}$	Correct conclusion with no errors	Alcso

(b) Alternative 2		
$y = (\operatorname{arcoth} x)^2 \Longrightarrow y^{\frac{1}{2}} = \operatorname{arcoth} x \Longrightarrow \frac{1}{2} y^{-\frac{1}{2}} \frac{dy}{dx} = \frac{1}{1 - x^2}$	Correct differentiation	B1
$\frac{1}{2}y^{-\frac{1}{2}}\frac{d^2y}{dx^2} - \frac{1}{4}y^{-\frac{3}{2}}\left(\frac{dy}{dx}\right)^2 = \frac{2x}{\left(1 - x^2\right)^2}$	M1: Correct use of product rule to give $py^{-\frac{1}{2}}\frac{d^{2}y}{dx^{2}} - qy^{-\frac{3}{2}}\left(\frac{dy}{dx}\right)^{2}$ $A1: \frac{1}{2}y^{-\frac{1}{2}}\frac{d^{2}y}{dx^{2}} - \frac{1}{4}y^{-\frac{3}{2}}\left(\frac{dy}{dx}\right)^{2} = \frac{2x}{\left(1 - x^{2}\right)^{2}}$	M1A1
Then substitute as before	to obtain $\frac{2}{1-x^2}$	M1A1cso
		Total 8

Question Number	Scheme		Notes	Marks
4(i)	$15 + 2r - r^2 - 16 - (r - 1)^2$	Correc	t completion of the square. Allow $5+2r-r^2 = -\left[(r-1)^2 - 16\right]$	P 1
	13 + 2x - x = 10 - (x - 1)	Allow	$(x^{-1}) = 10$	DI
	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin\left(\frac{x-1}{4}\right)$	1110 11	M1: $k \arcsin(f(x))$	MIAI
	$\int \sqrt{16 - (x - 1)^2}$ (4)		A1: Correct integration	
	$\left[\arcsin\left(\frac{x-1}{4}\right)\right]_{3}^{5} = \arcsin 1 - \arcsin \frac{1}{2}$		Correct use of correct limits	d M1
	$=\frac{\pi}{3}$			A1
	May	see:		
	$15 \cdot 2 \cdot \cdot \cdot \cdot^2 = 1(-(1 \cdot \cdot \cdot)^2)$		Correct completion of the square. Allow e.g.	D1
	15 + 2x - x = 16 - (1 - x)		$15 + 2x - x^{2} = -\left\lfloor (1 - x)^{2} - 16 \right\rfloor$	BI
	1 $(1-x)$		$\frac{1}{M1: karcsin(f(x))}$	
	$\int \frac{1}{\sqrt{16 - (1 - x)^2}} dx = -\arcsin\left(\frac{1}{4}\right)$		A1: Correct integration	M1A1
	$\left[-\arcsin\left(\frac{1-x}{4}\right)\right]_{3}^{5} = -\arcsin\left(-1\right) + \arcsin\left(\frac{1-x}{4}\right)^{5}$	$\left(-\frac{1}{2}\right)$	Correct use of correct limits	d M1
	$=\frac{\pi}{3}$			A1
	By substi	tution	1:	
	$15 + 2 + x^2 + 16 + (x + 1)^2$		Correct completion of the square. Allow e.g.	D1
	13+2x-x = 10-(x-1)		$15 + 2x - x^{2} = -\lfloor (1 - x)^{2} - 16 \rfloor$ Allow 4 ² for 16	DI
	$x-1 = 4\sin\theta \Rightarrow \int \frac{1}{\sqrt{16-(x-1)^2}}$	$dx = \int -$	$\frac{1}{\sqrt{16 - (4\sin\theta)^2}} 4\cos\theta \mathrm{d}\theta$	
	$=\int d\theta = \theta$		M1: A full substitution leading to $k\theta$ or $k \times$ their variable	M1A1
	$\left[\theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \frac{\pi}{2} - \frac{\pi}{6}$		A1: Correct integration Correct use of correct limits	d M1
	$=\frac{\pi}{3}$			A1

	By substitution 2:		
	$15 + 2x - x^2 = 16 - (x - 1)^2$	Correct completion of the square. Allow e.g. $15+2x-x^2 = -\left[\left(1-x\right)^2 - 16\right]$ Allow 4 ² for 16	B1
	$x-1 = u \Rightarrow \int \frac{1}{\sqrt{16 - (x-1)^2}} \mathrm{d}x$	$=\int \frac{1}{\sqrt{16-u^2}} \mathrm{d}u$	
	$\int \frac{1}{\sqrt{16-u^2}} dx = \arcsin\left(\frac{u}{4}\right)$	M1: karcsin(f(u)) A1: Correct integration	M1A1
	$\left[\arcsin\left(\frac{u}{4}\right) \right]_2^4 = \arcsin 1 - \arcsin \frac{1}{2}$	Correct use of correct limits	d M1
	$=\frac{\pi}{3}$		A1
	By substitution	3:	
	$15 + 2x - x^2 = 16 - (x - 1)^2$	Correct completion of the square. Allow e.g. $15+2x-x^2 = -\left[(1-x)^2 - 16\right]$ Allow 4 ² for 16	B1
	$x-1 = 4\cos\theta \Rightarrow \int \frac{1}{\sqrt{16-(x-1)^2}} dx = \int \frac{1}{\sqrt{16-(x-1)^2}} dx$	$\frac{1}{\sqrt{16 - (4\cos\theta)^2}} - 4\sin\theta \mathrm{d}\theta$	
	$= \int -d\theta = -\theta$	M1: A full substitution leading to $k\theta$ or $k \times$ their variable A1: Correct integration	M1A1
	$\left[-\theta\right]^0_{\frac{\pi}{3}} = 0 + \frac{\pi}{3}$	Correct use of correct limits	d M1
	$=\frac{\pi}{3}$		A1
			(5)
(ii)(a)	$5\cosh x - 4\sinh x = 5\left(\frac{e^x + e^{-x}}{2}\right) - 4\left(\frac{e^x - e^{-x}}{2}\right)$	Substitutes correct exponential forms	B1
	$=\frac{e^{x}+9e^{-x}}{2}$ or $\frac{e^{x}}{2}+\frac{9e^{-x}}{2}$	Expands and collects terms in e^x and e^{-x}	M1
	$=\frac{e^{2x}+9}{2e^{x}}*$	Correct completion with no errors	A1*
	More working may be shown but allow e.g. $\frac{e^x + 9e^-}{2}$	$\frac{e^{2x} + 9}{2e^{x}} = \frac{e^{2x} + 9}{2e^{x}} \text{ or } \frac{e^{x}}{2} + \frac{9e^{-x}}{2} = \frac{e^{2x} + 9}{2e^{x}}$	
			(3)

(b)	$u = e^x \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = e^x$		Correct derivative. Allow equivalents e.g. $\frac{dx}{du} = \frac{1}{u}$, $du = e^x dx$	B1
	$\int \frac{2\mathrm{e}^x}{\mathrm{e}^{2x}+9} \mathrm{d}x = \int \frac{2u}{u^2+9} \cdot \frac{\mathrm{d}u}{u}$	Complete sub omission of " otherwise con May be impli	postitution into $\int \frac{2e^x}{e^{2x}+9} dx$. Condone du'' provided the substitution is mplete apart from this. ed by e.g. $\int \frac{2}{u^2+9} du$	M1
	$=\frac{2}{3}\arctan\left(\frac{u}{3}\right)(+c)$)	<i>k</i> arctan(f(<i>u</i>)) only. Dependent on the first method mark.	dM1
	$=\frac{2}{3}\arctan\left(\frac{e^{x}}{3}\right)(+c)$)	Cao (+c not required)	A1
				(4)
				Total 12

Question Number	Scheme	Notes	Marks
5	$\frac{x^2}{16} - \frac{y^2}{9} = 1$ P(4se	$ec\theta$, $3\tan\theta$)	
(a)	$\frac{dy}{dx} = \frac{3\sec^2\theta}{4\sec\theta\tan\theta} \left(= \frac{3}{4\sin\theta} \right)$ or $\frac{2x}{16} - \frac{2y}{9}\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{8\sec\theta}{16} \times \frac{9}{6\tan\theta}$ or $y = 3\left(\frac{x^2}{16} - 1\right)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{3}{2}\left(\frac{x^2}{16} - 1\right)^{-\frac{1}{2}}\frac{x}{8}$ $= \frac{3}{2}\left(\frac{(4\sec\theta)^2}{16} - 1\right)^{-\frac{1}{2}}\frac{4\sec\theta}{8}$	M1: Correct gradient method. Finds $\frac{dy}{d\theta} = p \sec^2 \theta$ and $\frac{dx}{d\theta} = q \sec \theta \tan \theta$ and uses $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$ or differentiates implicitly to give $px + qy \frac{dy}{dx} = 0$ and substitutes for y and x to find $\frac{dy}{dx}$ or differentiates explicitly to give $\frac{dy}{dx} = px(qx^2 - 1)^{-\frac{1}{2}}$ and substitutes for x A1: Correct derivative in terms of trig. functions, e.g. $\frac{3\sec^2 \theta}{4\sec\theta \tan \theta}, \frac{8\sec\theta}{16} \times \frac{9}{6\tan\theta}$ Does not need to be simplified.	M1 A1
	Normal gradient $-\frac{4\sin\theta}{3}$	Correct perpendicular gradient rule. Does not need to be simplified.	M1
	$y - 3\tan\theta = -\frac{4\sin\theta}{3}(x - 4\sec\theta)$	Correct straight line method using a gradient (does not need to be simplified) in terms of θ that has come from calculus and is not the tangent gradient. If they use $y = mx + c$ then they must reach as far as finding <i>c</i> .	M1
	$3y + 4x\sin\theta = 25\tan\theta^*$	Correct proof with no errors and one intermediate step from the previous line. Allow $25 \tan \theta = 3y + 4x \sin \theta$	A1*
			(5)

(b)	$b^2 = a^2 (e^2 - 1) \Longrightarrow 9 = 16 (e^2 - 1) \Longrightarrow e = \frac{5}{4}$	M1: Use of the correct eccentricity formula to obtain a value for e A1: Correct value for e . Ignore \pm	M1A1
	$x = \frac{a}{e} \Longrightarrow x = \frac{16}{5} \text{ or } \frac{4}{\frac{5}{4}} \text{ etc.}$	Correct value for $\frac{a}{e}$ Ignore \pm	A1
	$\theta = \frac{\pi}{4}, x = \frac{16}{5} \Longrightarrow 3y + 2\sqrt{2} \times \frac{16}{5} = 25$	Substitutes $\theta = \frac{\pi}{4}$ into the given normal equation and uses their positive directrix equation to obtain an equation in y or in y and e only.	M1
	$y = \frac{25}{3} - \frac{32}{15}\sqrt{2}$	B1: $a = \frac{25}{3}$ oe or $b = -\frac{32}{15}$ oe B1: $a = \frac{25}{3}$ oe and $b = -\frac{32}{15}$ oe	B1B1 (A marks on EPEN)
	Special Case: If the correct form of the answer	r is never seen but it appears correctly	
	as a single fraction, allow B1B	$0 \text{ e.g. } y = \frac{125 - 32\sqrt{2}}{15}$	
			(6)
			Total 11

Question Number	Scheme	Notes	Marks
6(a)	$\begin{pmatrix} p & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & q \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} p - \lambda & -2 & 0 \\ -2 & 6 - \lambda & -2 \\ 0 & -2 & q - \lambda \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	This statement is sufficient for this mark. May be implied by one correct equation e.g. $2p+4=2\lambda$, $-4-12-2=-2\lambda$, $4+q=\lambda$	M1
	$-4 - 12 - 2 = -2\lambda \Longrightarrow \lambda = 9$	M1: Compares <i>y</i> -components to obtain a value for λ . Note that $-4-12-2 = -2\lambda$ leading to a value for λ scores both method marks. If working is not clear, at least 2 terms of " $-4-12-2$ " should be correct. A1: Correct eigenvalue	M1A1
			(3)
(b)	$\lambda = 9 \Longrightarrow 2p + 4 = 18 \Longrightarrow p = 7$ $\lambda = 9 \Longrightarrow 4 + q = 9 \Longrightarrow q = 5$	M1: Uses their eigenvalue to form an equation in p or q A1: Either $p = 7$ or $q = 5$ A1: Both $p = 7$ and $q = 5$	M1A1A1
(c)	(7 -2 0)(x) (x)	7x - 2y = 6x	
	$ \begin{pmatrix} -2 & 6 & -2 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 6 \begin{pmatrix} x \\ y \\ z \end{pmatrix} $	$\Rightarrow -2x + 6y - 2z = 6y$ $-2y + 5z = 6z$	M1
	Uses the eigenvalue 6 and their value o	of <i>p</i> or <i>q</i> correctly to obtain at least 2	
	equati	ons.	
	$\begin{pmatrix} 2\\1\\-2 \end{pmatrix} \text{ or e.g.} \begin{pmatrix} 1\\\frac{1}{2}\\-1 \end{pmatrix}$	This vector or any multiple of this vector.	A1
	Note that an eigenvector can be found fr	om the cross product of any 2 rows of	
	$\mathbf{M} - 6\mathbf{I} \mathbf{e.g.} \begin{vmatrix} \mathbf{i} \\ -2 \\ 0 \end{vmatrix}$	$\begin{vmatrix} \mathbf{j} & \mathbf{k} \\ 0 & -2 \\ -2 & -1 \end{vmatrix} = \begin{pmatrix} -4 \\ -2 \\ 4 \end{vmatrix}$	
			(2)
		1	(2)

(d) $\mathbf{P} = \begin{pmatrix} 2 & "2" & 1 \\ -2 & "1" & 2 \\ 1 & "-2" & 2 \end{pmatrix}$	Correct ft P . This should be a matrix of eigenvectors two of which are given in the question together with their eigenvector found from part (c). If an attempt is made to normalise the eigenvectors then allow the ft if slips are made when normalising.	B1ft
$\mathbf{D} = \begin{pmatrix} "9" & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 3 \end{pmatrix}$	Forms the matrix D by writing the eigenvalues 6, 3 and their λ on the leading diagonal and zeros elsewhere or attempts to calculate P ^T MP to obtain a single 3 by 3 matrix. Consistency not needed for this mark.	M1
$\left(\mathbf{P} = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix}, \mathbf{D} = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix} \right)$	$ \begin{pmatrix} 9 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{pmatrix} $ or $\begin{pmatrix} \mathbf{P} = \begin{pmatrix} 2 & -2 & 1 \\ -2 & -1 & 2 \\ 1 & 2 & 2 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 81 & 0 & 0 \\ 0 & 54 & 0 \\ 0 & 0 & 27 \end{pmatrix} \end{pmatrix} $ Fully correct and consistent matrices	A1
Note that	t the answers to part (d) may be implied e.g.	
$\mathbf{D} = \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{P} = \begin{pmatrix} 2 & -2 \\ -2 & -2 \\ 1 & -2 \end{pmatrix}$	$ \begin{array}{cccc} -2 & 1 \\ -1 & 2 \\ 2 & 2 \end{array} \begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix} \begin{pmatrix} 2 & -2 & 1 \\ -2 & -1 & 2 \\ 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 81 & 0 & 0 \\ 0 & 54 & 0 \\ 0 & 0 & 27 \end{pmatrix} $	
W	ould score all 3 marks by implication.	
		(3)
		Total 11

Question Number	Scheme		Notes	Marks	
7(a)	$\sin nx \sin (n-2)x \sin nx - \sin nx \cos 2x + \cos nx \sin 2x$				
	$\frac{1}{\sin x} - \frac{1}{\sin x} = \frac{1}{\sin x}$				
	Expands $\sin(n-2)x$ correctly				
	$\sin nx - \sin nx \left(1 - 2\sin^2 x\right)$)+2s	$\sin x \cos x \cos nx$		
	$=$ $\frac{1}{\sin x}$			M1	
	Replaces $\cos 2x$ and $\sin 2x$ by the c	orrect	t trigonometric identities		
	$= 2\sin nx\sin x + 2\cos nx\cos x$				
	$= 2\cos(n-1)x$				
			Correct completion with no errors. The $I_n - I_{n-2}$ does not		
	$(\cdot I - I) = \int 2\cos(n-1) r dr^*$		need to be seen explicitly but	A 1 *	
	$(, 1_{n-2}) = \int 2\cos(n-1)x dx$		$\int 2\cos(n-1)x\mathrm{d}x\mathrm{must}\mathrm{seen},$	AL	
			including the integral sign.		
				(3)	
	(a) Way 2 (fact	tor fo	rmula)		
	$\frac{\sin nx}{\cos nx} - \frac{\sin (n-2)x}{\sin (n-2)x} = \frac{2\cos \left(\frac{nx+1}{\cos nx}\right)}{\cos nx}$	$\frac{nx-2}{2}$	$\left(\frac{2x}{2}\right)\sin\left(\frac{nx-nx+2x}{2}\right)$	M1	
	$\sin x = \sin x$ $\sin x$				
	Use of the correct factor formula				
	$= \frac{2\cos(nx - x)\sin x}{\sin x}$ Attempts to replaces $nx + nx - 2x$ with $2nx - 2x$ and attempts to replace $nx - nx + 2x$ with $2x$			M1	
	$= 2\cos(n-1)x$		1		
	$(I_n - I_{n-2}) = \int 2\cos(n-1)x \mathrm{d}x^*$	Cor The exp	rect completion with no errors. $I_n - I_{n-2}$ does not need to be seen licitly but $\int 2\cos(n-1)x dx$ must	A1*	
	-	seet	J n. including the integral sign.		
	(a) Way 3				
	$I_n = \int \frac{\sin\left(\left(n-1\right)x + x\right)}{\sin x} dx$		Uses $\sin nx = \sin((n-1)x + x)$	M1	
	$= \int \frac{\sin(n-1)x\cos x + \sin x\cos(n-1)x}{\sin x} dx$	lx	Expands $\sin((n-1)x+x)$ correctly	M1	
	$=\frac{1}{2}\int \frac{\sin nx + \sin (n-2)x}{\sin x} dx + \int \cos (n-1)$	x dx			
	$= \frac{1}{2}I_n + \frac{1}{2}I_{n-2} + \int \cos(n-1)x dx$				
	$\therefore I_n - I_{n-2} = \int 2\cos(n-1)x \mathrm{d}x^*$		Correct completion with no errors.	A1*	

(a) Way 4			
$\frac{\sin nx}{\sin x} = \frac{\sin\left(\left(n-2\right)x+2x\right)}{\sin x}$	Uses $\sin nx = \sin((n-2)x + 2x)$	M1	
$=\frac{\sin(n-2)x(1-2\sin^2 x)+}{\sin^2 x}$	$\frac{2\sin x\cos x\cos (n-2)x}{x}$	M1	
Replaces $\cos 2x$ and $\sin 2x$ by the	correct trigonometric identities		
$=\frac{\sin(n-2)x}{\sin x}-2\sin x\sin(n-2)x$	$(-2)x+2\cos x\cos(n-2)x$		
$=\frac{\sin(n-2)x}{\sin x}+2\cos((n-2)x+x)$			
$I_n = I_{n-2} + 2\int \cos\left(n-1\right) x \mathrm{d}x$			
$\therefore I_n - I_{n-2} = \int 2\cos(n-1)x \mathrm{d}x^*$	Correct completion with no errors.	A1*	
(a) Way 5			
$\sin nx = \sin((n-1)x + x)$ and s	in(n-2)x = sin((n-1)x - x)	M1	
$\frac{\sin nx}{\sin x} - \frac{\sin (n-2)x}{\sin x} = \frac{\sin (n-1)x \cos x + \cos (n-1)x}{\operatorname{Replaces sin}((n-1)x + x)}$ with sin(Replaces sin((n-1)x - x) with sin($\frac{x \sin x - (\sin (n-1)x \cos x - \sin x \cos (n-1)x)}{\sin x}$ $n-1)x \cos x + \cos (n-1)x \sin x \text{ and}$ $n(n-1)x \cos x - \cos (n-1)x \sin x$	M1	
$\frac{\sin nx}{\sin x} - \frac{\sin (n-2)x}{\sin x} = \frac{2\sin x \cos (n-1)x}{\sin x}$			
$(\therefore I_n - I_{n-2}) = \int 2\cos(n-1)x \mathrm{d}x^*$	Correct completion with no errors. The $I_n - I_{n-2}$ does not need to be seen explicitly but $\int 2\cos(n-1)x dx$ must seen, including the integral sign.	A1	

(b)	$\int \cos 4x dx = k \sin 4x$ or $\int \cos 2x dx = k \sin 2x$	$\cos 4x$ integrated to $\pm k \sin 4x$ or $\cos 2x$ integrated to $\pm k \sin 2x$	M1
	$2\int \cos 4x dx = \frac{1}{2} \sin 4x$ and $2\int \cos 2x dx = \sin 2x$	Both 2cos4 <i>x</i> and 2cos2 <i>x</i> integrated correctly with the correct (possibly unsimplified) coefficients	A1
	$\int \frac{\sin 5x}{\sin x} dx = \frac{2\sin(4x)}{4} + I_3$ or $\int \frac{\sin 3x}{\sin x} dx = \frac{2\sin(2x)}{2} + I_1$	One application of reduction formula. This may appear in any form and there does not need to be any integration e.g. $I_5 = \int 2\cos 4x dx + I_3 or$ e.g. $I_3 = \int 2\cos 2x dx + I_1$	M1
	$\int \frac{\sin 5x}{\sin x} dx = \frac{2\sin(4x)}{4} + I_3$ and $\int \frac{\sin 3x}{\sin x} dx = \frac{2\sin(2x)}{2} + I_1$	Two applications of reduction formula. This may appear in any form and there does not need to be any integration e.g. $I_5 = \int 2\cos 4x dx + I_3$ and e.g. $I_3 = \int 2\cos 2x dx + I_1$ Note that $\int \frac{\sin 3x}{\sin x} dx$ may be attempted using trig. Identities and can score full marks as long as use of the reduction formula is seen at least once.	M1
	$I_1 = \frac{\pi}{12}$	(Could be implied by their final answer)	B1
	$\left[\frac{2\sin(4x)}{4} + \frac{2\sin(2x)}{2}\right]_{\frac{\pi}{12}}^{\frac{\pi}{6}} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{4} - $	$\frac{1}{2} \qquad \begin{array}{l} \text{Correct use of the given limits at} \\ \text{least once on an expression of the} \\ \text{form } \pm k \sin 4x \text{ or } \pm k \sin 2x \end{array}$	M1
	$\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \frac{\sin 5x}{\sin x} \mathrm{d}x = \frac{1}{12} \Big(\pi + 6\sqrt{3} - 6 \Big)$	cao	A1
		(2)	(7)
	Note that correct work leading to $\begin{bmatrix} \frac{2\sin(4x)}{4} \\ \text{score the firs} \end{bmatrix}$	$\left[\frac{x}{2} + \frac{2\sin(2x)}{2} + x\right]$ or equivalent could t 4 marks	
			Total 10
			I OLAL IV

Question Number	Scheme			Notes	Marks
8					
(a)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & 3 \\ 2 & -1 & 1 \end{vmatrix} = \begin{pmatrix} 7 \\ 5 \\ -9 \end{pmatrix}$		M1: A directi the pl or is u correc mark. A1: C	ttempt cross product between on vectors or any 2 vectors in ane. If working is not shown nclear, 2 elements should be t for their vectors for this	M1A1
	$\begin{pmatrix} 1\\-5\\-2 \end{pmatrix} \bullet \begin{pmatrix} 7\\5\\-9 \end{pmatrix} (=7-25+18)$	Attem	pts $\begin{pmatrix} 1\\ -5\\ -2 \end{pmatrix}$	• their vector product $\frac{1}{2}$	M1
	$\begin{pmatrix} 1 \\ -5 \\ -2 \end{pmatrix} \bullet \begin{pmatrix} 7 \\ 5 \\ -9 \end{pmatrix} = 7 - 25 + 18 = 0 \therefore \text{ per}$	pendicula	ur Co	orrectly obtains $= 0$ and gives a onclusion.	A1
			Note		
	$\begin{pmatrix} 1 \\ -5 \\ -2 \end{pmatrix} \bullet \begin{pmatrix} 7 \\ 5 \\ -9 \end{pmatrix} = 0 \therefore \text{ perpendicular scores M1A0 here.}$				
	However $\begin{bmatrix} -5 \\ -2 \end{bmatrix} \bullet \begin{bmatrix} 5 \\ -9 \end{bmatrix}$	=7-25	+18 =	0 ∴ perpendicular scores M1A1	
			BUT		
	$If \begin{pmatrix} 7\\5\\-9 \end{pmatrix} is incorrect then \begin{pmatrix} 1\\-5\\-2 \end{pmatrix}$	$ \left $	a – 5b –	-2c needs to be seen to score the	M mark
			M(1. T)	(: -): - : : - : :	(4)
(D)	$\begin{pmatrix} 7\\5\\-9 \end{pmatrix} \bullet \begin{pmatrix} 1\\2\\1 \end{pmatrix} = 8 \Longrightarrow 7x + 5y - 9z$	= 8	product of Π_2 "8" if must b point of A1: Co	is $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and their vector of to find the cartesian equation . You may need to check their no working is shown but it be clear that $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ (or a on the plane) is being used. For rect equation (any multiple	M1A1
	Note that part (b) i	a possible	or equ	ivalent equation)	
	$x = 1 + \lambda + 2\mu, y = 2 + 4\lambda$	$-\mu, z =$	$1+3\lambda +$	ur part (a). e.g. - μ	
	$x \Rightarrow y + z = 3 + 7\lambda$ and $x + 3$	2y = 5 + 9	$\partial \lambda \Rightarrow 9$	(y+z)-7(x+2y) = -8	
	$\therefore 7x + 5y - 9z = 8$			· / · · · /	
	Score as M1: Full method leading	g to a Car	tesian e	equation, A1: Correct equation	
					(2)

(c)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & 5 & -9 \\ 1 & -5 & -2 \end{vmatrix} = \begin{pmatrix} -55 \\ 5 \\ -40 \end{pmatrix}$	M1: Attempt cross product of normal vectors. A1: $k(11\mathbf{i} - \mathbf{j} + 8\mathbf{k})$	M1A1
	$x = 0: (0, -\frac{1}{5}, -1), y = 0: (-\frac{11}{5}, 0)$ Note that points on the line satis	$\begin{array}{l} \hline b, -\frac{13}{5}, & z = 0: (\frac{11}{8}, -\frac{13}{40}, 0) \\ \text{fy } (1 1t, -\frac{1}{5} - t, -1 + 8t) \end{array}$	M1A1
	M1: Attempt point on the line $(x, y \text{ and } z)$. A1: Correct coordinates		
	$(\mathbf{r} - (-\frac{1}{5}\mathbf{j} - \mathbf{k})) \times (11\mathbf{i} - \mathbf{j} + 8\mathbf{k}) = 0$	ddM1: (r – their point) × their direction "= 0" not required for this mark. Dependent on both previous method marks. A1: Correct equation (oe)	ddM1A1
			(6)
			12 marks

Alternatives for part (c	e) by si	multaneous equations	
Case 1: Eliminates y then obtains $f(x) = g(y) = z$			
x - 5y - 2z = 3, 7x + 5			
$z = \frac{8x - 11}{11}, x = \frac{11 + 11z}{8} \Longrightarrow \frac{11}{11}$			
$\frac{8x-11}{11} = \frac{-40y-13}{5} = z$		M1: Obtains $f(x) = g(y) = z$ A1: Correct expressions	M1A1
$\frac{x - \frac{11}{8}}{\frac{11}{8}} = \frac{y + \frac{13}{40}}{-\frac{1}{8}} = \frac{z(-0)}{(1)}$	M1: expr iden	Correct processing on at least one ession (not z) to enable tification of position and direction. Correct equations	M1A1
$(\mathbf{r} - (\frac{11}{8}\mathbf{i} - \frac{13}{40}\mathbf{j})) \times (\frac{11}{8}\mathbf{i} - \frac{1}{8}\mathbf{j} + \mathbf{k}) =$	= 0	ddM1: (r – their point) × their direction "= 0" not required for this mark. Dependent on both previous method marks. A1: Correct equation (oe)	ddM1A1
Case 2: Eliminates x	then o	btains $f(x) = y = g(z)$	
x-5y-2z=3, 7x+5	y-9z	$= 8 \Longrightarrow 40y + 5z = -13$	
$y = \frac{-13 - 5z}{40}, z = \frac{-13 - 40y}{5} \Rightarrow x$	-5 <i>y</i> +	$2\left(\frac{13+40y}{5}\right) = 3 \Longrightarrow y = \frac{-5x-11}{55}$	
$\frac{-5x-11}{55} = y = \frac{-13-5z}{40}$		M1: Obtains $f(x) = y = g(z)$ A1: Correct expressions	M1A1
$\frac{x+\frac{11}{5}}{-11} = \frac{y(-0)}{(1)} = \frac{z+\frac{13}{5}}{-8}$	M1: C express of poss A1: C	Correct processing on at least one ssion (not y) to enable identification sition and direction. orrect equations	M1A1
$(\mathbf{r} - (-\frac{11}{5}\mathbf{i} - \frac{13}{5}\mathbf{k})) \times (-11\mathbf{i} + \mathbf{j} - 8\mathbf{k}) = 0$ $\frac{\mathbf{d}\mathbf{d}\mathbf{M}1: (\mathbf{r} - \text{their point}) \times \text{their}}{\text{direction "= 0" not required for this mark. Dependent on both previous method marks.}}$ $\mathbf{A}1: \text{Correct equation (oe)}$			dd M1A1
Case 3: Eliminates z	then o	btains $x = f(y) = g(z)$	
x - 5y - 2z = 3, 7x + 5y	v-9z =	$=8 \implies 5x+55y=-11$	
$x = \frac{-55y - 11}{5}, y = \frac{-11 - 5x}{55} \Rightarrow x + 5\left(\frac{11 + 5x}{55}\right) - 2x = 3 \Rightarrow x = \frac{11z + 11}{8}$			
$x = \frac{-55y-11}{11z+11}$		M1: Obtains $x = f(y) = g(z)$	M1A1
$x = \frac{5}{5} = \frac{8}{8}$		A1: Correct expressions	
$\frac{x(-0)}{(1)} = \frac{y + \frac{1}{5}}{-\frac{1}{11}} = \frac{z+1}{\frac{8}{11}}$	M1: expr iden A1:	Correct processing on at least one ession (not z) to enable tification of position and direction. Correct equations	M1A1
$(\mathbf{r} - (-\frac{1}{5}\mathbf{j} - \mathbf{k})) \times (\mathbf{i} - \frac{1}{11}\mathbf{j} + \frac{8}{11}\mathbf{k}) =$	= 0	ddM1: (r – their point) × their direction "= 0" not required for this mark. Dependent on both previous method marks. A1: Correct equation (oe)	dd M1A1

Alternatives for part	(c) by parameters		
Case 1: Eliminates x			
$x-5y-2z=3, 7x+5y-9z=8 \implies 8x-11z=11$			
$x = t \Longrightarrow z = -1 + \frac{8}{11}t, \ y = -\frac{1}{5} - \frac{1}{11}t$	M1: Obtains x, y and z in terms of λ A1: Correct expressions	M1A1	
$Pos: -\frac{1}{5}\mathbf{j} - \mathbf{k} Dir: \mathbf{i} - \frac{1}{11}\mathbf{j} + \frac{8}{11}\mathbf{k}$	M1: Uses their equations to obtain position and direction A1: Correct position and direction	M1A1	
$(\mathbf{r} - (-\frac{1}{5}\mathbf{j} - \mathbf{k})) \times (\mathbf{i} - \frac{1}{11}\mathbf{j} + \frac{8}{11}\mathbf{k}) = 0$	ddM1: (r – their point) × theirdirection "= 0" not required for thismark. Dependent on both previousmethod marks.A1: Correct equation (oe)	ddM1A1	
Case 2: Elin	ninates y		
x-5y-2z=3, 7x+5y-9z	$r = 8 \implies 40y + 15z = -13$		
$y = t \Longrightarrow z = -\frac{13}{5} - 8t, \ y = -\frac{1}{5} - 11t$	M1: Obtains x, y and z in terms of λ A1: Correct expressions	M1A1	
<i>Pos</i> : $-\frac{11}{5}\mathbf{i} - \frac{13}{5}\mathbf{k}$ <i>Dir</i> : $-\frac{11}{5}\mathbf{i} + \mathbf{j} - 8\mathbf{k}$	M1: Uses their equations to obtain position and direction A1: Correct position and direction	M1A1	
$(\mathbf{r} - (-\frac{11}{5}\mathbf{i} - \frac{13}{5}\mathbf{k})) \times (-11\mathbf{i} + \mathbf{j} - 8\mathbf{k}) = 0$	dd M1: (r – their point) × their direction "= 0" not required for this mark. Dependent on both previous method marks. A1: Correct equation (oe)	ddM1A1	
Case 3: Elin	ninates z		
x - 5y - 2z = 3, 7x + 5y - 9	$\Theta z = 8 \implies 8x - 11z = 11$		
$z = t \Longrightarrow x = \frac{11}{8} + \frac{11}{8}t, \ y = -\frac{13}{40} - \frac{1}{8}t$	M1: Obtains x, y and z in terms of λ A1: Correct expressions	M1A1	
$Pos: \frac{11}{8}i - \frac{13}{40}j Dir: \frac{11}{8}i - \frac{1}{8}j + k$	M1: Uses their equations to obtain position and direction A1: Correct position and direction	M1A1	
$(\mathbf{r} - (\frac{11}{8}\mathbf{i} - \frac{13}{40}\mathbf{j})) \times (\frac{11}{8}\mathbf{i} - \frac{1}{8}\mathbf{j} + \mathbf{k}) = 0$	ddM1: (r – their point) × theirdirection "= 0" not required for thismark. Dependent on both previousmethod marks.A1: Correct equation (oe)	ddM1A1	

Alternative for part (c) by finding 2 points on the line		
$x = 0: (0, -\frac{1}{5}, -1), y =$	$x = 0: (0, -\frac{1}{5}, -1), y = 0: (-\frac{11}{5}, 0, -\frac{13}{5}), z = 0: (\frac{11}{8}, -\frac{13}{40}, 0)$	
M1: Attem	M1: Attempts two points on the line	
A1: Tv	A1: Two correct coordinates	
Dir:	M1: Subtracts to obtain direction	
$-\frac{1}{5}\mathbf{j} - \mathbf{k} - \left(-\frac{11}{5}\mathbf{i} - \frac{13}{5}\mathbf{k}\right) = \frac{11}{5}\mathbf{i} - \frac{11}{5}\mathbf{k}$	$-\frac{1}{5}\mathbf{j} + \frac{8}{5}\mathbf{k}$ A1: Correct direction	M1A1
$(\mathbf{r} - (-\frac{1}{5}\mathbf{j} - \mathbf{k})) \times (\frac{11}{5}\mathbf{i} - \frac{1}{5}\mathbf{j} + \frac{8}{5}\mathbf{j}$	$\frac{ddM1: (r - \text{their point}) \times \text{their}}{\text{direction "= 0" not required for this}}$ mark. Dependent on both previous method marks.	dd M1A1
	A1: Correct equation (oe)	